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ABSTRACT: Two uncertainty relations, one related to the probability density current
and the other one related to the probability density, are derived and discussed. Both
relations are stronger than the Heisenberg uncertainty relations. Their generalization to the
multidimensional case and to the mixed states is also discussed. © 2008 Wiley Periodicals,
Inc. Int J Quantum Chem 109: 1626–1630, 2009
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1. Introduction

U ncertainty relations, one of the fundamental
results of quantum mechanics, have been stud-

ied in a large number of articles (see e.g., [1–6]; for
a detailed review, see [7]). The standard approach
to their derivation is based on the wave function ψ .
It is shown below that the approach based on the
probability density current and probability density
yields uncertainty relations that are stronger than the
corresponding Heisenberg uncertainty relation.
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2. One-Dimensional Case

By analogy with continuum mechanics, it is possi-
ble to introduce in quantum mechanics not only the
probability density ρ but also the probability density
current j related to the “velocity” v

j = ρv. (1)

The quantities ρ ≥ 0 and v can be expressed in
terms of two real functions s1 = s1(x, t) and s2 =
s2(x, t) as follows

ρ = e−2s2/�, (2)

v = 1
m

∂s1

∂x
, (3)
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HEISENBERG UNCERTAINTY RELATIONS

where x is the coordinate, t denotes time, and m is
the mass. Then, by introducing the wave function ψ

ψ = e(is1−s2)/�, (4)

we can get two basic formulas of quantum mechanics

ρ = |ψ |2 (5)

and

j = �

2mi

(
ψ∗ ∂ψ

∂x
− ψ

∂ψ∗

∂x

)
, (6)

where the star denotes the complex conjugate. It is
seen that instead of ρ and j, the state of the quantum
mechanical system can be described by the functions
s1 and s2 or the wave function ψ [8–10].

It is assumed in this article that the probability
density ρ has the properties

∫ ∞

−∞
ρdx = 1 (7)

and

lim
x→±∞ ρ(x) = 0. (8)

Taking into account that the mean value

〈
∂s2

∂x

〉
=

∫ ∞

−∞
ψ∗ ∂s2

∂x
ψdx =

∫ ∞

−∞

∂s2

∂x
ρdx

= −�

2

∫ ∞

−∞

∂ρ

∂x
dx (9)

equals zero it can easily be shown that 〈(�p)2〉
appearing in the Heisenberg uncertainty relation

〈(�x)2〉〈(�p)2〉 ≥ �
2/4 (10)

can be written as the sum of two quantities

〈(�p1)
2〉 =

〈(
∂s1

∂x

)2
〉

−
〈
∂s1

∂x

〉2

(11)

and

〈(�p2)
2〉 =

〈(
∂s2

∂x

)2
〉

(12)

that are greater than or equal to zero. The first quan-
tity 〈(�p1)

2〉 depends on (∂s1/∂x) and ρ and can
be different from zero for the nonzero probability

density current j only. The second quantity 〈(�p2)
2〉

depends only on the form of the wave packet given
by s2 and is independent of j. Therefore, the sep-
aration of 〈(�p)2〉 into two parts given above has
a good physical meaning. An analogous separation
was discussed also in [11] within the framework of
one-dimensional stochastic mechanics.

Now we can use the Schwarz inequality
(u, u)(v, v) ≥ |(u, v)|2, where the inner product is
defined as the integration over all x. For the func-
tions u = (x−〈x〉)√ρ and v = (∂s1/∂x−〈∂s1/∂x〉)√ρ

we get the first uncertainty relation

〈(�x)2〉〈(�p1)
2〉 ≥

〈
(x − 〈x〉)

(
∂s1

∂x
−

〈
∂s1

∂x

〉)〉2

. (13)

Equation (13) was also derived within the frame-
work of Nelson’s stochastic mechanics [11].

The second uncertainty relation can be obtained
by putting u = (x−〈x〉)√ρ and v = (∂s2/∂x)

√
ρ with

the result

〈(�x)2〉〈(�p2)
2〉 ≥ �

2/4. (14)

Equation (14) is known for example from [12], see
also the stochastic variational approach to the min-
imum uncertainty states [13]. Another discussion of
Eq. (14) can be found in [8–10].

We see that the Heisenberg uncertainty relation
(10) can be replaced by two more detailed uncer-
tainty relations (13) and (14) for the information
carried by the functions s1 (information related to the
probability density current j describing the motion
in space) and s2 (information related to the prob-
ability density ρ describing the form of the wave
packet). For real wave functions ψ , corresponding to
s1 = 0, Eq. (13) gives trivial result 0 = 0, and Eq. (14)
becomes the Heisenberg uncertainty relation (10). In
a general case, the uncertainty relations (13) and (14)
are stronger than the Heisenberg uncertainty relation
(10).

3. Multi-Dimensional Case

We consider the N-dimensional space with the
coordinates x = (x1, . . . , xN) and the probability
density ρ ≥ 0 given by the wave function ψ

ρ(x, t) = |ψ(x, t)|2. (15)

It is assumed that this probability density fulfills
the boundary conditions

ρ|∞xm=−∞ = 0, m = 1, . . . , N (16)

VOL. 109, NO. 8 DOI 10.1002/qua INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 1627



SKÁLA AND KAPSA

and the standard normalization condition∫
ρ(x, t)dτ = 1, dτ = dx1 . . . dxN , (17)

where the integration is carried out over the whole
space.

The mean values of the coordinates are defined as

〈xm〉 =
∫

xmρdτ . (18)

The N × N covariance matrix (�X)2 is given by
the equation

(�X)2
mn =

∫
(xm − 〈xm〉)(xn − 〈xn〉)ρdτ . (19)

Assuming that cm are arbitrary complex numbers
it can easily be verified that this matrix is positive
semidefinite

N∑
m,n=1

c∗
m(�X)2

mncn =
∫ ∣∣∣∣∣

N∑
m=1

cm(xm − 〈xm〉)
∣∣∣∣∣
2

ρdτ ≥ 0.

(20)

Analogously to Section 2, the wave function ψ is
written in the form

ψ = e(is1−s2)/�, (21)

where s1 = s1(x1, . . . , xN , t) and s2 = s2(x1, . . . , xN , t)
are real functions. The functions s1 and s2 give the
probability density ρ

ρ = |ψ |2 = e−2s2/� (22)

and the probability density current

jk = �

2mi

(
ψ∗ ∂ψ

∂xk
− ψ

∂ψ∗

∂xk

)
= 1

m
∂s1

∂xk
ρ. (23)

Further, we calculate the mean value of the
momentum operator p̂m = −i�(∂/∂xm), which must
be real

〈p̂m〉 =
∫

ψ∗p̂mψdτ =
∫

∂s1

∂xm
ρdτ + i

∫
∂s2

∂xm
ρdτ

=
∫

∂s1

∂xm
ρdτ =

〈
∂s1

∂xm

〉
. (24)

Similarly, we get

〈p̂mp̂n〉 =
∫

(p̂mψ)∗(p̂nψ)dτ

=
∫ (

∂s1

∂xm

∂s1

∂xn
+ ∂s2

∂xm

∂s2

∂xn

)
ρdτ (25)

and

(�P)2
mn =

∫
[(p̂m − 〈p̂m〉)ψ]∗(p̂n − 〈p̂n〉)ψdτ

= 〈p̂mp̂n〉 − 〈p̂m〉〈p̂n〉

=
∫ (

∂s1

∂xm

∂s1

∂xn
+ ∂s2

∂xm

∂s2

∂xn

)
ρdτ

−
∫

∂s1

∂xm
ρdτ

∫
∂s1

∂xn
ρdτ . (26)

Analogously to the matrix (�X)2, it can be shown
that the matrix (�P)2 is positive semidefinite.

It can be verified that both matrices appearing in
Eq. (26)

(�P1)
2
mn =

∫
∂s1

∂xm

∂s1

∂xn
ρdτ −

∫
∂s1

∂xm
ρdτ

∫
∂s1

∂xn
ρdτ

(27)
and

(�P2)
2
mn =

∫
∂s2

∂xm

∂s2

∂xn
ρdτ , (28)

(�P1)
2 + (�P2)

2 = (�P)2 (29)

are positive semidefinite, too. The matrix (�P1)
2

depends on (∂s1/∂xm) and ρ (i.e., s2) and can be dif-
ferent from zero for the nonzero probability density
current j = (j1, . . . , jN) only [see Eq. (23)]. The second
matrix (�P2)

2 depends only on the form of the wave
packet given by s2 and is independent of j. Therefore,
the separation of (�P)2 into two parts given by Eqs.
(27)–(29) has a good physical meaning.

Now, we define a correlation matrix G

Gmn =
∫

(xm − 〈xm〉)
(

∂s1

∂xn
−

〈
∂s1

∂xn

〉)
ρdτ (30)

and create a new 2N × 2N matrix M

M =
(

(�X)2 GT

G (�P1)
2

)
, (31)

where the superscript T denotes the transposition.
Using similar arguments as in case of the matrix
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(�X)2, it can be shown that the matrix M is posi-
tive semidefinite. Further, we make use of a general
result valid for N ×N matrices A, B, C, and D, where
D is a regular matrix having the property det(D) �= 0
and 1 denotes the N × N unity matrix

(
1 −BD−1

0 1

) (
A B
C D

)
=

(
A − BD−1C 0

C D

)
(32)

leading to

det
(

A B
C D

)
= det(A − BD−1C) det(D). (33)

Applying this equation to the matrix M given by
Eq. (31), the first multidimensional uncertainty rela-
tion for the matrices (�X)2 and (�P1)

2 is obtained

det(M) = det{(�X)2(�P1)
2

− GT[(�P1)
2]−1G(�P1)

2} ≥ 0. (34)

In the one-dimensional form, Eq. (34) leads to Eq.
(13).

Further, we replace the function s1 by s2 and repeat
the discussion made in the preceding paragraph.
Taking into account the equation

〈
∂s2

∂xm

〉
=

∫
∂s2

∂xm
ρdτ = −�

2

∫
∂ρ

∂xm
dτ

= −�

2

∫
ρ|∞xm=−∞dτ ′ = 0, (35)

where dτ ′ = dx1 · · · dxm−1dxm+1 · · · dxN , the matrix
element Gmm can be replaced by G′

mm

G′
mm =

∫
(xm − 〈xm〉) ∂s2

∂xm
ρdτ . (36)

Performing here the integration by parts in the
variable xm, assuming that [(xm − 〈xm〉)ρ]∞xm=−∞ = 0
and using Eqs. (17), (18) we get

G′
mm = −�

2

∫
[(xm − 〈xm〉)ρ]∞xm=−∞dτ ′ + �

2

∫
ρdτ = �

2
.

(37)
By using Eqs. (16)–(18) we get similarly

G′
mn =

∫
(xm − 〈xm〉) ∂ρ

∂xn
dτ

=
∫

(xm − 〈xm〉)ρ|∞xn=−∞dτ ′′ = 0, m �= n, (38)

where dτ ′′ = dx1 · · · dxn−1dxn+1 · · · dxN . Equation (33)
applied to the matrix

M′ =
(

(�X)2
�/2

�/2 (�P2)
2

)
(39)

then yields the second multidimensional uncertainty
relation

det
[
(�X)2(�P2)

2 − �
2

4

]
≥ 0 (40)

or, in the one-dimensional form, Eq. (14).
The third uncertainty relation can be obtained

by replacing (�P2)
2 in the matrix M′ by (�P)2 =

(�P1)
2 + (�P2)

2. The resulting matrix remains pos-
itive semidefinite, and Eq. (40) then leads to the
multidimensional uncertainty relation

det
[
(�X)2(�P)2 − �

2

4

]
≥ 0 (41)

which is known for example from [3–7]. The one-
dimensional form of this relation is the Heisenberg
uncertainty relation (10).

There is one important difference between the
uncertainty relation (41) and the uncertainty rela-
tions (34) and (40). The uncertainty relation (41) is
based on using the wave function ψ (see [3–7]). In
contrast to it, the uncertainty relations (34) and (40)
are based on using the probability density current
and probability density. Because of Eq. (29), these
uncertainty relations are in general stronger than the
uncertainty relation (41).

Discussion of the multidimensional uncertainty
relations (34) and (40) can be found also in [14].

4. Generalization to Mixed States

Finally, we note that the uncertainty relations (34),
(40), and (41) can be generalized to mixed states
when the system can be found in the states described
with the probabilities wj by the wave function
ψj(x, t), j = 1, 2, 3, . . . . The density matrix for such a
system can be written as

∑
j |ψj〉wj〈ψj|. The matrices

(�X)2, (�P1)
2, (�P2)

2, and G can be then defined as

(�X)2
mn =

∑
j

wj

∫
ψ∗

j (xm − 〈xm〉)(xn − 〈xn〉)ψjdτ ,

(42)
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where

〈xm〉 =
∑

j

wj

∫
ψ∗

j xmψjdτ , (43)

(�P1)
2
mn =

∑
j

wj

∫
ψ∗

j

∂s1j

∂xm

∂s1j

∂xn
ψjdτ

−
∑

j

wj

∫
ψ∗

j

∂s1j

∂xm
ψjdτ

∑
k

wk

∫
ψ∗

k
∂s1k

∂xn
ψkdτ , (44)

(�P2)
2
mn =

∑
j

wj

∫
ψ∗

j

∂s2j

∂xm

∂s2j

∂xn
ψjdτ (45)

and

Gmn =
∑

j

wj

∫
ψ∗

j (xm − 〈xm〉)
(

∂s1j

∂xn
−

〈
∂s1j

∂xn

〉)
ψjdτ .

(46)

Here, ψj = e(is1j−s2j)/�, s1j and s2j are real functions and∑
j wj = 1.

It can easily be shown that the uncertainty rela-
tions (34), (40), and (41) are valid also in this case.
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